skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schmitz, EK"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Environments with fluctuating oxygen are intense challenges for organisms both on land and in the water. Aquatic organisms can be exposed to especially stressful bouts of hypoxia that come on rapidly and to extreme levels. The copepodTigriopus californicusinhabits supralittoral rocky pools and appears tolerant of hypoxia levels considered lethal for other aquatic organisms despite lacking molecular components typically used by animals to detect and respond to low environmental oxygen. Here, we quantified the natural regime of dissolved oxygen (DO) pools inhabited byT. californicusvia deployment of continuous oxygen sensors in copepod pools in Oregon, USA. Using wild-derived cultures from northern (Oregon) and southern (Californian) populations, we exposed copepods to hypoxia and anoxia and assayed loss of equilibrium (LOE) and survival. We also quantified respiratory regulation via critical oxygen tension, oxygen supply capacity, and regulation index. The pools underwent extreme daily cycles of DO, and near anoxia often persisted for up to 6 h. Respiratory statistics indicated individuals could regulate oxygen consumption even near anoxia, predicting a species with hypoxia tolerance ranking high among aquatic taxa. Copepods survived hypoxia below 0.3 mg O2l-1for up to 72 h with some individuals not showing any LOE. Survival was high following even 6 and 15 h exposure to anoxia. We observed sex and population differences in lethality and LOE, with southern populations exhibiting higher resilience. Intraspecific variation in tolerance makes this system a candidate for future studies to investigate alternative molecular and physiological pathways of hypoxia response. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026